The Workshop

Herzliya, Israel, April 7-11, 2019

Genome stability, which is essential for cellular homeostasis, relies primarily on the DNA damage response network. Genome stability is also essential to the proper functioning of the nervous system, evidenced by the prominence of neurodegeneration in many genome instability syndromes. Recent evidence suggests a broader role of genome stability in human health, one that affects aging and common chronic morbidities. Genome Dynamics in Neuroscience and Aging (GDNA) is an interdisciplinary EMBO workshop bringing together researchers of the DNA damage response, neuroscience, aging, cell senescence, mitochondrial function, and metabolism to discuss the links between genome stability and these aspects of human physiology, and the impact of genome instability on them and on longevity.

Invited Speakers

Proud to bring inspirational speakers

  • Andrés Aguilera

    University of Seville
    Spain

    Read more
  • Rami Aqeilan

    Hebrew University-Hadassah Medical School, Israel

    Read more
  • Ari Barzilai

    Tel Aviv University
    Israel

    Read more
  • Mary Beth Hatten

    Rockefeller University
    NY, USA

    Read more
  • Vilhelm Bohr

    National Institute of Aging, NIH, MD, USA

    Read more
  • Keith Caldecott

    University of Sussex
    UK

    Read more
  • Judith Campisi

    The Buck Institute
    CA, USA

    Read more
  • Danica Chen

    Berkeley University
    CA, USA

    Read more
  • Haim Cohen

    Bar Ilan University
    Israel

    Read more
  • Chris de Zeeuw

    Erasmus Medical Center
    Rotterdam, Netherlands

    Read more
  • Domenico Delia

    IFOM
    Milan, Italy

    Read more
  • George A. Garinis

    Foundation for Research and Technology - Hellas, Greece

    Read more
  • Sherif El-Khamisy

    University of Sheffield
    UK

    Read more
  • Natalia Gromak

    Universit of Oxford
    UK

    Read more
  • Naomi Habib

    The Hebrew University of Jerusalem, Israel

    Read more
  • Nathaniel Heintz

    Rockefeller University
    NY, USA

    Read more
  • Sivan Henis-Korenblit

    Bar-Ilan University
    Israel

    Read more
  • Jan Hoeijmakers

    Erasmus Medical Center
    Rotterdam, Netherlands

    Read more
  • Karl Herrup

    Hong Kong University of Science and Technology

    Read more
  • Lene Juel Rasmussen

    University of Copenhagen
    Denmark

    Read more
  • Frank Kirchhoff

    University of Saarland
    Saarbrücken, Germany

    Read more
  • Valery Krizhanovsky

    Weizmann Institute of Science, Israel

    Read more
  • Peter McKinnon

    St Jude Children’s Research Hospital, Memphis, TN, USA

    Read more
  • Martin Lavin

    University of Queensland
    Brisbane, Australia

    Read more
  • Tanya Paull

    Universit of Texas at Austin
    TX, USA

    Read more
  • Harry Orr

    University of Minnesota
    Minneapolis, MN, USA

    Read more
  • John Rouse

    University of Dundee
    UK

    Read more
  • Björn Schumacher

    University of Cologne
    Germany

    Read more
  • Yosef Shiloh

    Tel Aviv University
    Israel

    Read more
  • Debbie Toiber

    Ben-Gurion University of the Negev, Israel

    Read more
  • Tone Tønjum

    Oslo University Hospital, Norway

    Read more
  • Jan Vijg

    Albert Einstein College of Medicine, NY, USA

    Read more
  • Zhao-Qi Wang

    Leibniz Institute on Aging
    Jena, Germany

    Read more

Andrés Aguilera

University of Seville
Spain

Lecture

Interplay between RNA, Chromatin and the DNA Damage Response in Genome Instability

 

Bio

Andrés Aguilera is Professor of Genetics in Seville University and Director of CABIMER. He did his PhD in Seville in 1983 and two postdocts in the Darmstadt Technical University (Germany) and the NYU Medical Center (USA). He started his lab in 1991 focusing his research interests on the mechanisms by which replication, transcription and RNA cause genome instability, in particular those mediated by R loops, and their connection with chromatin modifications, and on the mechanisms of DSB repair by sister chromatid recombination. He is member of EMBO and of international of Boards of different Research Centres and scientific journals.

Rami Aqeilan

Hebrew University-Hadassah Medical School, Israel

Lecture

DNA Double Strand Breaks at the Crossroad of Cancer and Neuropathies

 

Bio

Born in Jerusalem, Dr. Rami Aqeilan is a Full Professor of Immunology and Cancer Research at the Hebrew University of Jerusalem. Dr. Aqeilan has had a long-term interest in the genetic and molecular basis of cancer development. Dr. Aqeilan’s laboratory studies the role of fragile genes in cancer development and in neurodegeneration and how defects in DNA double strand breaks impact these maladies. He is the winner of several awards among which is the Sydney Kimmel Award for Cancer Research, Ma’of Fellowship, the Bergman Memorial Research Award, the prestigious ERC-consolidator grant and the 2018-Youdim Prize for Cancer Research.

Ari Barzilai

Tel Aviv University
Israel

Lecture

Atm Affects Cerebellar Structure and Function

Mary Beth Hatten

Rockefeller University
NY, USA

Lecture

Mechanisms of Cerebellar Development:  Migration, Circuit Formation and Cortical Plasticity

Vilhelm Bohr

National Institute of Aging, NIH, MD, USA

Lecture

DNA Damage Signaling to Mitochondria in Aging and Neurodegeneration

 

Bio

Dr. Bohr received his M.D. in 1978, Ph.D. in 1987, and D.Sc. in 1987 from the University of Copenhagen, Denmark. After training in neurology and infectious diseases at the University Hospital in Copenhagen, Dr. Bohr did a postdoctoral fellowship at the University of Copenhagen, Denmark. He then worked at Stanford University as a research scholar from 1982-1986. In 1986 he was appointed to the National Cancer Institute (NCI) as an investigator, becoming a tenured Senior Investigator in 1988. Dr. Bohr developed a research section in DNA repair at the NCI. In 1992 he moved to the NIA to become Chief of the Laboratory of Molecular Genetics. His main contributions have been in the area of DNA repair. He has worked on many aspects of DNA damage and its processing in mammalian cells. He developed a widely used method for the analysis of DNA repair in individual genes and found that active genes are preferentially repaired. This observation was a major advance in the clarification of the tight interaction between DNA repair and transcription, a process termed transcription-coupled repair. In recent years numerous papers from his laboratory have focused on mechanisms of DNA damage processing, particularly on nucleotide excision repair and transcription coupling. A main interest now is to elucidate how these processes change in relation to aging.

Keith Caldecott

University of Sussex
UK

Lecture

DNA Strand Breaks and Neurological Disease

Judith Campisi

The Buck Institute
CA, USA

Lecture

DNA Damage and Senescence Responses Alter Brain Function

 

Bio

Judith Campisi trained in biochemistry and cancer biology at the State University of New York and Harvard Medical School.  She joined the Boston University Medical School faculty, then moved to the Lawrence Berkeley National Laboratory in 1991.  In 2002, she started a second laboratory at the Buck Institute, where she is Professor.  Campisi established a broad program to understand the relationship between aging and disease, with an emphasis on cancer and aging.  She received several awards for her research, is member of the US National Academy of Sciences, and serves on numerous national and international editorial and advisory boards. 

Danica Chen

Berkeley University
CA, USA

Lecture

Mitochondrial Metabolic Checkpoint, Stem Cell Aging and Rejuvenation

 

Bio

Danica Chen is an Associate Professor of Metabolic Biology, Nutritional Sciences & Toxicology at University of California at Berkeley, a member of Berkeley Stem Cell Center, and a member of QB3 Consortium in Lifespan Extension. She was a Searle Scholar, an Ellison Scholar, a Kavli Fellow, and a Hellman Fellow. Dr. Chen received Ph.D. in molecular and cell biology from University of California at Berkeley and obtained postdoctoral training in biology at Massachusetts Institute of Technology. Her research aims to understand the molecular and cellular mechanisms underlying aging-associated conditions and elucidate which aspects of aging-associated conditions are reversible. Recent studies from her lab have revealed mitochondrial stresses as causes of stem cell exhaustion and tissue degeneration during aging. She identified mitochondrial stress resistance programs that become dysregulated in aged stem cells, and demonstrated these programs can be targeted to improve survival and regenerative capacity of aged stem cells. These findings give hope for targeting aging-associated dysregulated cellular protective programs, such as the pathways regulated by NAD+-dependent enzymes sirtuins, to reverse stem cell aging, tissue degeneration and dysfunction. 

Haim Cohen

Bar Ilan University
Israel

Lecture

SIRT6 Regulates  Cognition via Maintaining Genome Stability at Old Age

Chris de Zeeuw

Erasmus Medical Center
Rotterdam, Netherlands

Lecture

Common Default Pathways in Cerebellar Function and Disorders

Domenico Delia

IFOM
Milan, Italy

Lecture

Activity-dependent Responses and DDR Signaling in hiPSC-derived Neurons from Ataxia-telangiectasia Patients

 

Bio

Dr Domenico Delia is molecular biologist with a longstanding interest in  ATM kinase and its function in DNA damage responses, and in the neurodegenerative mechanisms occurring in the ATM-deficient the Ataxia Telangiectasia (A-T)  syndrome.

To this aim, he has been developing in vitro model systems of neurodegeneration in A-T using human neural stem cells and more recently neurons and glial cells derived from iPSCs established from patient’s fibroblasts.

George A. Garinis

Foundation for Research and Technology - Hellas, Greece

Lecture

DNA Damage and the Innate Immune Response in Development and Aging

 

Bio

George A. Garinis is professor of Genetics at the Department of Biology, University of Crete, GR and an affiliated group leader at the Institute of Molecular Biology and Biotechnology (IMBB) in FORTH, Crete, GR. George received his PhD in 2001 from the Medical School of Athens and pursued his postdoctoral studies with Prof. Jan Hoeijmakers (2001-2008) at the Erasmus Medical School in Rotterdam. Using a unique set of DNA repair-deficient mice, his lab has been able to provide us with insights in how persistent DNA damage is functionally linked to the premature onset of metabolic and endocrine perturbations.

Sherif El-Khamisy

University of Sheffield
UK

Lecture

Friends Bbecome Enemies: DNA Repair and Autophagy Converge to Promote Neurodegeneration

 

Bio

Sherif El-Khamisy is a pharmacist by training, a Wellcome Trust Investigator and a Lister Institute Fellow at the University of Sheffield. Sherif's lab uses a combination of biochemical, genetic and whole animal approaches to study how cells maintain genomic integrity in health and disease. His early work revealed the importance of repairing chromosomal single-strand breaks to maintain neurological function. More recently, the lab identified new players and mechanisms for repairing oxidative and protein-linked chromosomal breaks and uncovered their connection to human disorders such as ataxia, dementia and ALS.

Natalia Gromak

Universit of Oxford
UK

Lecture

Unusual RNA/DNA Structures and Genome Stability in Health and Disease

 

Bio

Natalia is originally from Belarus. She moved to UK to study Molecular Biology at the University of Edinburgh.  She did her PhD in the University of Cambridge, studying regulation of alternative splicing. Natalia did her Post-Doctoral research at the University of Oxford focusing on understanding of co-transcriptional RNA processing events. In 2011, Natalia became a Group Leader at the Dunn School of Pathology, University of Oxford, supported by a Royal Society University Research Fellowship. She is also a fellow of St. John’s College. Natalia investigates the function of usual RNA/DNA structures in health and disease.

Naomi Habib

The Hebrew University of Jerusalem, Israel

Lecture

The Cellular Landscape of the Alzheimer’s Brain

Nathaniel Heintz

Rockefeller University
NY, USA

Lecture

Cells Types, Circuits and CNS Complexity

Sivan Henis-Korenblit

Bar-Ilan University
Israel

Lecture

Neuronal Cues Control Germline Pluripotency and Reproductive Aging

 

Bio

Dr. Sivan Henis-Korenblit is an associate professor at Bar-Ilan University, Israel.  Her main research interest is identifying the molecular mechanisms of aging using the model organism C. elegans. Her lab investigates abnormal proteostasis stress responses, similar to those that occur as part of the normal aging process, in the context of a whole metazoan, as it ages. Her long-term aim is to develop new ways to overcome age-related proteostasis collapse and improve lifespan and healthspan. Her research combines methodologies of molecular biology, cell biology and genetics to study ER homeostasis and ageing in C. elegans.

Jan Hoeijmakers

Erasmus Medical Center
Rotterdam, Netherlands

Lecture

From DNA Damage to Protein Aggregates: Aging as the Main Risk Factor for Dementias

 

Bio

Jan Hoeijmakers discovered unexpected DNA rearrangements resolving antigenic variation by which trypanosomes evade immune destruction (PhD thesis). In 1981 he started to study DNA repair (Erasmus Medical Center Rotterdam) and cloned the first human DNA repair gene, followed by many more allowing elucidation of the nucleotide excision repair mechanism and discovery of a surprising link with basal transcription. He clarified the basis of repair disorders, e.g. Cockayne syndrome and trichothiodystrophy. His team generated numerous mouse repair mutants and disclosed a tight connection between DNA damage and (accelerated) aging, a trade-off between cancer and aging and DNA-damage-induced transcription stress in normal aging explaining all proteinopathies. He found that calorie restriction dramatically delays premature aging, most prominently neurodegeneration and triples lifespan in repair-deficient mice by reducing endogenous DNA damage. These findings have wide clinical implications for repair syndromes and dementia’s. For his work he received numerous awards and prizes.

Karl Herrup

Hong Kong University of Science and Technology

Lecture

The Secret Lives of Kinases: the Roles of ATM in Senescence and Metabolomics

Lene Juel Rasmussen

University of Copenhagen
Denmark

Lecture

Replication Stress Induces Age-related Disorders via PARP1 Activation and Impaired Mitochondrial Homeostasis

 

Bio

Lene Juel Rasmussen is Professor at the University of Copenhagen and Managing Director of the interdisciplinary aging center, Center for Healthy Aging, residing within the Faculty of Health and Medical Sciences. Her research aims to unravel the complex molecular basics of aging and the development of aging associated diseases. Within this context, her research group focuses on the molecular understanding of mitochondrial dysfunction and how cells achieve to preserve mitochondrial and nuclear DNA integrity as well as DNA repair.

Frank Kirchhoff

University of Saarland
Saarbrücken, Germany

Lecture

Heterogeneity of Mouse Astrocytes – from Genes to Brain Functions

 

Bio

Fk studied biochemistry at the University of Hannover and received a PhD degree in neurobiology from the University of Heidelberg. After research positions in Berlin (MDC) and Göttingen (MPI Experimental Medicine), he is now full professor of physiology at the Center for Integrative Physiology and Molecular Medicine (University of Saarland, Homburg). His research focuses on the molecular and cellular mechanisms of neuron-glia interaction in the central nervous system (CNS). Employing in vivo two-photon imaging and genetically modified mice, his group studies, in particular, the functional role of transmitter receptors in astrocytes and oligodendrocytes of various CNS regions.

Valery Krizhanovsky

Weizmann Institute of Science, Israel

Lecture

Accumulation of Senescent Cells – Mechanisms and Consequences

 

Bio

Cellular senescence in aging, tissue damage, cancer and embryonic development. Web: http://www.weizmann.ac.il/mcb/valery/

Dr. Krizhanovsky received his PhD in Biology at the Hebrew University of Jerusalem in 2005.  He then did his postdoctoral training at Cold Spring Harbor Laboratory, USA. In 2010 Dr. Krizhanovsky joined Weizmann Institute of Science where he is now Associate Professor at the Department of Molecular Cell Biology. During his carrier, he discovered the role of cellular senescence in tissue damage, established the role of NK cells in the immune surveillance of senescent cells, presence of senescence in the placenta and discovered senolytic pathways allowing specific elimination of senescent cells in vivo. His laboratory studies the role of senescent cells in aging, age-related diseases and cancer.  

Peter McKinnon

St Jude Children’s Research Hospital, Memphis, TN, USA

Lecture

DNA Damage and Disease Etiology in the Nervous System

 

Bio

Peter McKinnon received his PhD from Adelaide, Australia where he worked on chromatin structure and ataxia telangiectasia (A-T), subsequently developing an interest in the neurobiology of A-T.  His postdoctoral focused on molecular neurobiology and mouse genetics.  Upon moving to St. Jude Children’s Hospital as a faculty member, he established a research program to study the neurobiology of A-T.  This work broadened to examine the relationship between DNA damage signaling, genome instability and disease in the nervous system.

Martin Lavin

University of Queensland
Brisbane, Australia

Lecture

Defective Processing of Neuronal-induced DNA Double Strand Breaks in Purkinje Cells from Patients with Ataxia-telangiectasia

 

Bio

Martin Lavin is Foundation Professor of Molecular Oncology at the University of Queensland. He obtained his PhD at Trinity College Dublin before taking up appointments at the University of Queensland and the Queensland Institute of Medical Research.The main focus of his research is on rare genetic disorders characterized by defects in the DNA damage response  including ataxia-telangiectasia (A-T). He has investigated the genetic and biochemical basis of A-T for many years with emphasis on the function of ATM, the protein defective in A-T employing model systems to investigate the neurodegenerative phenotype and extending these studies to a more translational level.  

Tanya Paull

Universit of Texas at Austin
TX, USA

Lecture

Consequences of ATM Loss in Human Cells

 

Bio

Dr. Paull received her B.S. and M.S. in Biological Sciences from Stanford Univ. in 1991, and received her Ph.D. from UCLA in 1996. Her post-doctoral research with Dr. Martin Gellert at NIH was supported by a fellowship from the Helen Hay Whitney Foundation. Dr. Paull established an independent laboratory in 2000 in the Dept. of Molecular Genetics and Microbiology at the University of Texas at Austin. Her research is aimed toward understanding the DNA damage response in eukaryotic cells, as well as the intersection between this response, oxidative stress signaling, and protein homeostasis.

Harry Orr

University of Minnesota
Minneapolis, MN, USA

Lecture

Therapeutic Effects of ASO-mediated Reduction of Atxn1 in Atxn1154Q/2Q Mice: Proof of Concept with a Molecular Comparison between Cerebellar and Brainstem Disease

 

Bio

Orr completed his Ph.D. at Washington University, a Postdoctoral fellowship at Harvard, and joined the University of Minnesota faculty in 1981.  His research uses genetic, biochemical, and behavioral approaches to study the polyQ neurodegenerative disease spinocerebellar ataxia type 1 (SCA1). In collaboration with Huda Zoghbi at Baylor, the gene affected in SCA1 - the first genetically defined ataxia – was cloned in 1993. They established the first transgenic mouse model of a polyglutamine disease. The work indicates that the normal function(s) of Ataxin-1 are critical for disease. Use of RNA-seq to identify pathways involved in SCA1 is underway. Current focus is on two signaling pathways each having distinct but seminal roles in SCA1, phosphorylation of ATXN1 at Ser776 and activation of Cck1Rs to dampened Purkinje cell degeneration in SCA1 and other SCAs.

John Rouse

University of Dundee
UK

Lecture

Towards a Molecular Understanding of CDKL5 Disorder

 

Bio

John Rouse’s research focuses on the molecular mechanisms underlying the signalling and repair of DNA damage. His team’s work places strong emphasis on how DNA repair mechanisms are controlled by protein phosphorylation and ubiquitylation. A major aim of John’s work is to understand how derailment of DNA repair can cause disease, and to understand how pathogenic mutations affect DNA repair. Over the years John’s laboratory has discovered a host of factors vital for DNA repair. These include the SLX4 regulator of DNA repair nucleases, the FAN1 DNA repair nuclease and the DVC1/SPRTN protease all of which play critical roles in preventing genome instability and disease.

Björn Schumacher

University of Cologne
Germany

Lecture

Systemic DNA Damage Responses in Aging and Disease

 

Bio

Björn Schumacher directs the Institute for Genome Stability in Ageing and Diseases at CECAD Research Centre of the University of Cologne. He conducted his PhD at the Max Planck Institute for Biochemistry in Munich and postdoctoral research at the Erasmus Medical Centre in Rotterdam. B.S. is President of the German Society for Ageing Research and Vice President of the German Society for DNA Repair. His research interest focuses on the causal role of DNA damage in cancer and ageing-associated diseases. His group uncovered cell-autonomous and systemic responses through which the organism adapts to accumulating DNA damage during ageing.

Yosef Shiloh

Tel Aviv University
Israel

Lecture

Ataxia-telangiectasia: Are We Closer to Understanding the Cerebellar Degeneration?

Debbie Toiber

Ben-Gurion University of the Negev, Israel

Lecture

The Neuroprotective Role of SIRTUIN 6 in the Aging Brains

 

Bio

Debbie Toiber works on models of ageing and neurodegeneration involved in genomic stability. Debbie did her PhD in Prof. Soreq’s lab at the Hebrew University of Jerusalem, where she discovered novel variants of AChE and their roles in brain pathology. During her Postdoctoral studies at Prof. Mostoslavsky lab in MGH-Harvard Medical School, Debbie studies the role of SIRT6 response to double-strand breaks. She is in Ben Gurion University in Israel since 2014, where she studies the role of SIRT6 in preventing DNA damage accumulation, and premature brain aging. 

Tone Tønjum

Oslo University Hospital, Norway

Lecture

Genome Dynamics in the Brain-gut Axis

Jan Vijg

Albert Einstein College of Medicine, NY, USA

Lecture

Single-cell, Integrated Analysis of Genome Instability in Aging

 

Bio

Jan Vijg, Ph.D., is Professor and Chairman of the Department of Genetics at the Albert Einstein College of Medicine in New York since July, 2008. He received his Ph.D. at the University of Leiden, The Netherlands, in 1987. From 1990 to 1993 he was founder and Scientific Director of Ingeny B.V., a Dutch Biotechnology company. In 1993 he moved to Boston, to take up a position as Associate Professor of Medicine at Harvard Medical School. In 1998 he accepted an offer from the University of Texas Health Science Center in San Antonio, Texas, to become a Professor in the Department of Physiology. From 2006 to 2008 he was a Professor at the Buck Institute for Age Research in Novato, California. With his research team he was the first to develop transgenic mouse models for studying mutagenesis in vivo (in 1989) and has used these models ever since in studying the relationship between damage to the genome and aging. He has published over 300 scientific articles and three books, and is inventor or co-inventor on 8 patents.

Zhao-Qi Wang

Leibniz Institute on Aging
Jena, Germany

Lecture

Dissection of MRN Functions in the Central Nervous System

 

Bio

Dr Zhao-Qi Wang received his B.S. from Shandong University in 1982; M.S. from Peking Union Medical College (PUMC) in 1985; Ph.D. from Innsbruck University in 1993. From 1988-1997 he was Postdoctoral fellow, Staff Scientist and Scientist at Institute of Molecular Pathology (I.M.P.) Vienna. 1997-2006 he was Unit Chief at International Agency for Research on Cancer (IARC) Lyon; Since 2006 he is a full Professor at Friedrich-Schiller-University Jena and Senior Group Leader at Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany. His research focuses on DNA damage response and genomic stability using mouse models. His favorite molecules include ATM, ATR, NBS1, PARP1, MCPH1 and Trrap-HAT.

Registration

Early Bird Special

10% OFF

*Offer ends January 13th

Full participant

2220

Registration Fees Include:

  • Entrance to all Sessions
  • Entrance to Exhibition
  • Lunches
  • Coffee Breaks
  • Refreshments
  • Program Book
  • Excursion & Dinner
  • Tel Aviv Tour & Farewell

Register Now

Pricing does not include travel & Accommodation

Student

740

Registration Fees Include:

  • Entrance to all Sessions
  • Entrance to Exhibition
  • Lunches
  • Coffee Breaks
  • Refreshments
  • Program Book
  • Excursion & Dinner
  • Tel Aviv Tour & Farewell

Register Now

Pricing does not include travel & Accommodation

Sponsors