The Potential of Solar Thermal to Substantially Replace Fossil Fuels for Electricity Generation in Israel

Roman Adinberg

5th Eilat-Eilot Renewable Energy Conference November 27-29 Eilat Israel

Discussion

- Solar-Fossil hybrid power systems for electricity generation via the conventional Rankine (steam turbine) cycle.
- Evaluation of the annual solar capacity fraction vs. thermal storage capacity.
- Exploring the ways to double the annual solar capacity of hybrid power systems from 35 to 70%.
- Conclusions

1.16

Solar-Fossil Hybrid Power System SOLAR POWER FOSSIL FUEL CSP System Electricity Gi 🛪 EG Thermal Power Block Storage h1 Rankine Cycle WWWWWWW Turbine Steam Turbine Boiler h2 Condenser M Feed Pump h4 h3 際 WEIZMANN INSTITUTE OF SCIENCE

Worldwide in 2011, 1.3 GW of CSP were operating and a further 2.3 GW were under construction

Solar Thermal Electricity by CSP Technologies

Parabolic Trough Plants 50 to 300 MW Proven utility scale technology Commercial operation since 1984

Solar Tower Plants 10 to 20 MW in Spain Large projects to be built in the USA The Ivanpah complex of **3** plants **377** MW

High efficiency of 30%

Dish Stirling Systems 10 kW to 100 MW Linear Fresnel Systems up to 6 MW demo Large plants under development

State of the art Thermal Storage Technology

2-tank Molten Salt System			
Tanks Size	14 m height		
	38 m diameter		
Molten Salt	K/Na nitrates		
Amount	28,500 tons		
Storage Capacity	1010 MWh = 7.5 h		
Annual Solar Fraction	~ 35-37%		

Direct Normal Irradiation Map (*solargis.info*)

The solar resource in NEGEV is quite good, >2000 kWh/m²/Yr, for clean electricity generation from sun

Control Logic Model

CSP Input	Q _R	DNI time series data			
Base Load	$Q_L =$	$Q_1 + Q_3 + Q_3$	$Q_1 + Q_3 + Q_F = Const.$		
CSP Output	Q ₀	$> Q_L$	$< Q_L$		
Direct Power Input	Q ₁ =	Q_{L}	Q ₀		
Storage Charge	$Q_2 =$	$Q_0 - Q_1 \vee 0$	0		
Storage Discharge	Q ₃ =	0	$Q_L - Q_0$		
Fossil Fuel Input	Q _F =	0	$Q_L - Q_1 - Q_3$		
Reserve Power	Q _r =	$0 \mathbf{V} \mathbf{Q}_{0} - \mathbf{Q}_{1}$	0		
Nominal Storage Capacity = Max[E _S (t)] over year					
Initial Conditions:		Annual Cycle:			
$\mathbf{E}_{\mathrm{S}}(0) = \mathbf{E}_{\mathrm{S}}(\mathbf{yr}) = 0$		8760 hours			
The Model is solved numerically using Mathematica 8					

SUMMARY

For the target value of annual solar capacity factor

70%,

as compared to the referent **37%** Solar Parabolic Trough Plants need:

- x2 Solar collector size (3.4)
- x3 Thermal storage capacity (22 h)
- about 10% of the available solar energy is reserved

Comparative Advantage:

2 times reduced (63 to 30%) fossil fuel consumption

This research has been supported by:

- FP7 European Research Infrastructures Project, SFERA - Solar Facilities for the European Research Area, 2009-2012
- □ Ministry of Energy and Water Resources of Israel, Contract No. 210-11-022/2010-1-62, 2011-2013
- □ The Weizmann Institute of Science

Global CSP Market Players Survey by EuPD Research, 2008

R&D	Manu- facturers	Project developers	Investors/ Creditors	EPC	Operators/IF	PP Utilities
CIEMAT/PSA CNRS CERTH DLR DOE Fraunhofer ISE IDAE IEA Solar Paces INETI NREL PSI SANDIA Weizmann Institute	 3M Alstom Balcke-Dürr Dèfi Systémes Flabeg GE GEA Ibérica Guardian Kraftanlagen München MAN Turbo Novatec Biosol Rioglass Saint-Gobain Schott Solar Siemens Solel SPX Cooling Thermodyn 	Abengoa Acciona ACS Albiasa Solar Aries Ausra Brightsource Enerstar esolar Iberdrola Iberdrola Ibereólica Solar Novatec Biosol SES Skyfuel Solar Millennium SolarReserve Torresol Valoriza	ADB Banc Sabadell Banesto Caja Madrid Calyon CAM Cofides Commerzbank ElB Fidelity ING JBIC KfW IPEX Lupus Alpha Masdar Natixis Piraeus Bank Santander SI Capital Société Generale Swisscanto Ubibanca UBS Union Invest West LB World Bank/GEF	Abener Acciona Aries Astrom Babcock Montajes Cobra Duro Felguera Elecnor Fichtner Fichtner Flagsol FPL Energy Iberese Iberinco Isolux Kraftanlagen München MAN Solar Millennium M+W Zander	Abengoa Acciona ACS Aries Enerstar FPL Energy Iberdrola Ibereólica Solar Masdar Solar Millennium Valoriza Sener	APS Endesa Iberdrola NEAL Nevada Solar ONE Sierra Pacific Sierra Pacific

Monthly Change of Solar Fraction

WEIZMANN INSTITUTE OF SCIENCE