

Energy Technologies at Scale: Nanoscience by the Ton

Eilat Eilot Green Energy Conference Peter Littlewood, Director Argonne National Laboratory pblittlewood@anl.gov

Today, our mission is to solve the world's greatest challenges - with scalable solutions

Outline

- Scale : generation, storage and transmission of energy from renewable sources
- Cost : technology measured in \$/kg
- Science
 - 20th century condensed matter physics has evolved along with its technologies --- transistor, laser, display --- to maximise information capacity in dense packages for consumption
 - how will our science evolve along with 21st century technology pulls?
- How much headroom, and how?

Sources of renewable energy and the needs of the planet

Energy usage per square meter

population density (people per sq km)

Courtesy D J Mackay, UK DECC

Renewables must be deployed on country-sized scale

Courtesy D J Mackay, UK DECC

Solar: the energy input

- Solar insolation is the major energy input to the planet
- Mean radiative solar flux =341.5 W/m²
- This energy gets redistributed into other degrees of freedom
 - thermalised into infra-red --- "heat"
 - wind energy
 - wave energy
 - rainfall

How much do we need ?

USA average power consumption = 3 TeraWatt (Israel ~ 0.03TW)

10 kW per person (Israel ~ 4 kW)

5 billion microwave ovens

Solar flux on 10,000 km² = Delaware + Rhode Island (Israel 100 km²)

Solar photovoltaics in the USA

Photo courtesy SEPA

- The US uses 3 TeraWatts of power, averaged over the day
- In 2011 2 GigaWatts (peak) installed in US (about 20GW worldwide)
- Unfortunately the rating assumes 1kW/m² intensity of insolation (mid-day in Arizona)
- In practice, the average power is probably 20-30% of peak (at best) so this is 0.02% of demand
- Can we scale this up ?

https://financere.nrel.gov/finance/content/calculating-total-us-solar-energy-production-behind-the-meter-utility-scale

Technologies by volume

Global shipments of silicon wafers 1st quarter 2012 2033 million square inches¹ ¹ Source: semi.org

1.2 square kilometers

[Global Foundries Fab 8 in Malta NY]

2011 Solar PV Capacity in USA - 2 GW (peak) 10 square kilometers

3 TW @ 300 W/m² (Full insolation in AZ) 10000 km²

30 GW @ 300 W/m² (Full insolation in Eilat) 100 km^2

30 GW @ 80 W/m² 400 km² State of the art PV - 30% efficient

30 GW @ 30W/m² 1000 km² (5% land area of Israel) Typical solar PV installation ~ 10% efficient

3 TW @ 5W/m² 600000 km² Typical installed PV under cloudy conditions

Backing up grid renewables with storage

3 Terawatts x 12 hours equals: 9 times the **annual** energy generated by the Hoover Dam 10⁸ tons of Li-ion batteries: ~ 10³ times current production

Einstein discovers that time is actually money

The (energy) cost of making things

Materials are energy, and energy is money

Energy input accounts for:

- 1/3 cost of steel (\$1/kg)
- 1/2 cost of aluminum (\$2.50/kg)

How much headroom for new technologies ?

Transformative materials technologies for the electrified economy

- Solar PV for electricity generation (or solar to fuel)
- Ultracapacitors/batteries for electrical storage
- Superconductors for electrical transmission/motors
- Thermoelectrics for refrigeration/scavenging
- Light emitting diodes for electrical lighting
- Membranes for water purification/desalination

Point use is easier: smaller scale for fabrication, straightforward path to introduction Large scale disruptive technologies are very hard

> Aside from the grid, we have no examples of implementing wide scale "by the ton" electrical materials technology

Why electrical storage?

- Rechargeable lithium-ion batteries already a \$40B business (2011)
 - Improving at few percent per annum
 - Can we do this faster?
- Laggard technology
 - Around 1% theoretical efficiency; (lighting ~80%, solar PV ~30%)
 - Can we do something much better?

- Scale To back up U.S. power use (~3 TeraWatt) for 12 hours takes:
 - 9x annual energy production of the Hoover Dam
 - 1,000x the annual production of Li-ion batteries
 - Can we do something at scale?

Argonne's comprehensive energy storage portfolio

Argonne's Li-ion battery research program: From fundamental research to cars on the road

Discovered new composite structures for stable, high-capacity cathodes

Tailored electrode materials

Created high-energy Li-ion cells with double cathode capacity, enhanced stability

Licenses to materials cell manufacturers and automobile companies

Argonne provides scale-up research in energy storage, offers testing facilities to users

Joint Center for Energy Storage Research

\$100/kWh ANSPORTATI 400 Wh/kg 400 Wh/L 800 W/kg 800 W/L 1000 cycles 80% DoD C/5

15 yr calendar life

\$100/kWh

EUCAR

95% round-trip efficiency at C/5 rate 7000 cycles C/5

20 yr calendar life

Safety equivalent to a natural gas turbine

Transformational goals: 5-5-5

- 5 times greater energy density
- 1/5 cost
- within 5 years

Legacies

- Library of fundamental knowledge
 - Atomic and molecular understanding of battery phenomena
- Pre-commercial prototypes for grid and transportation
- New paradigm of battery development
 - Build the battery from the bottom up
 - Systems-centric
 - End-to-end integration

Opportunity space beyond lithium-ion is large, unexplored and rich

Pruning the search tree

Screening of 1,800 intercalant hosts

In operando X-ray

Systems analysis and techno-economic modeling

Assessing the near-term challenges of lithium-air batteries

What is actually possible? A thought experiment

Polar heterostructures demonstrate there is a possible solution

A Ohtomo & H Hwang, Nature 427, 423 (2004)

- Once voltage offset = bandgap, chemical potential of carriers controlled by external circuit
- Carriers are lattice-constant sized, so in principle density high
- There are a few issues with materials growth, defects, reconstructed surfaces etc ... currently a fictional and extremely expensive device

Can there be a Moore's law for batteries ?

77

Nanotechnology fabs of the future ...

Thank you

Thank you