Grid parity in Israel Initial study

Hanan Einav Levy

Faculty of Aero-Space engineering, Technion institute of technology, Haifa 32000,Israel, Israel

Yoel Cohen Chief Scientist Office, Ministry of Energy and Water Resources, Israel

Outline

- Current road map implementation in Israel
- Current status and market cost at Israel
- Additional considerations for <u>large scale</u> implementation of grid parity renewable energies
 - Matching to demand profile
 - Land resources
 - Stability of supply and CC
- Summary

Current road map

% of total Ren. power 2020

Price status PV and wind low penetration levels – no special stability and backup compensation needs

Comparison Cost of KW-h /shekels low penetration of RNE

Price status PV and wind

Comparison Cost of KW-h /shekels high penetration of RNE

Conclusions and Remarks

- Without need for stabilization and backup PV and wind have better cost
- In small penetration levels this issue is negligible
- In large penetration levels of these variable resources there is a need to verify the stability of supply:
 - Wind
 - PV
 - Wind & PV combined
 - Per season and peak of demand

Issue # 1: Is there a need for short term compensation of wind and PV?

- The energy generation function is smooth in all cases
- The size is large
- The geographical spread is wide

Issue # 2: Need for compensation of RNE at the peak hours

Example wind farm: Installed capacity – 10 Mw

$$CC = \frac{\overline{P}_{peak period}}{P_{rated}} = \frac{3 M w}{10 M w}$$

example : CC = 30 %

Capacity credit is dependent on:

Capacity factor

•Correlation between electricity consumption and wind energy

Introducing the final metric - CC/CF

- The simulations presented are based on low height wind measurements
- Therefore instead of looking at the CC and the CF, it makes more sense to look at the ratio – CC/CF
- This ratio shows "how well the wind-electricity produced fits the electricity-consumption trend"
- Less sensitive to actual simulated CF
- CC/CF = 0 --> no correlation (all wind blows at night for example)
- CC/CF >> 1 --> perfect correlation

Monthly variation of daily peak CC

Israel wind, interannual monthly–average, of daily peak capacity credit Interannual capacity factor = 27%

Taking these 26 stations together

Daily correlation to electricity usage – 26 stations

Typical summer correlation

Typical winter correlation

Improvement of minimal CC in the winter

Winter

• More stations better capacity credit – but overall small benefit

Optimization – results

<u>Summery</u>

- In the summer a 1500 Mw installation throughout Israel could peak-shave more then 500 Mw (860 in this scenario)
- At winter ~50 Mw

The synergy between Solar and Wind

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

What's Old: Wind + solar > wind or solar what's New: <u>quantifiable</u>

Issue # 3: PV area resource and needs Basic assumptions

- We used the following
 - Output per Panel: Each square meter of PV panel will be able to use 1750 sun hours → With the latest development of 17.5% efficiency and 0.81 PR we get optional 250kW-h annual output per square meter.
 - Area use: We can use <u>more then 25%</u> of pitched (sloped) roofs areas and <u>aggressive target</u> 60% <u>roofs</u> as available place for panels

Israel Needs vs. resources Based on GIS data

Actual status of energy converted to square Km area

The distribution of roof areas PV potential based on GIS data [TW-h]

Expected Energy Generation from PV panels on top of roofs (in TW-h per year units)

The use of available area is based on zero shadowing and minimum PV investments

The use of available area is based on zero shadowing and minimum PV investments

Some additional remarks

- Proper calculations should take the reflectivity changes per angle as another parameter – this was checked and found to have contribution < 1%
- There is additional impact of the temperature vs. tilt that will not allow flat tilt orientation

The advantage of working at "non best mode of tilt" annual data

Comparison of sensitivity of azimutal placement for few tilt

cases

The advantage of working at "non best mode of tilt" annual data

95.000%-100.000%
90.000%-95.000%
85.000%-90.000%
80.000%-85.000%
75.000%-80.000%
70.000%-75.000%

100.000%

95.000%

90.000%

85.000%

80.000%

75.000%

10

Conclusions

- Large scale implementation of wind
 - Need to **consider** preferable installation locations
 - There is a correlation of the wind to the summer peak , therefore there is no need for summer backup. However we need 90% Backup in winter.
 - Use of combined wind and PV synergy will ensure large CC in the summer
 - Take advantage of the of difference between summer peak of the demand and winter peak of demand to minimize backup
- Large scale PV implementation
 - Preferable Distributed installations
 - Use nearly flat tilts for efficient use of roof and land resources
 - Take advantage the difference between summer peak of the demand and winter peak of demand for installations without any need for backup