

THE BATSHEVA DE ROTHSCHILD SEMINAR ON TOPOLOGY MEETS DISORDER AND INTERACTIONS: PRESENT CHALLENGES, FUTURE PROMISES 27-31 MAY, 2018

RAMON INN MITZPE RAMON

Home | About | Invited Speakers | Venue | Registration | Program | Scientific Committee | Photos

Conductance Anomalies in Transport through Quantum Dots and Quantum Point Contacts

Jan von Delft

Quantum dots and quantum point contacts, two elementary building blocks of semiconducting nanodevices, both exhibit famously anomalous conductance features: the Kondo effect in the former case, and the 0.7-anomaly in the latter.

The microscopic origin of the Kondo effect is well established - it results from a localized spin degree of freedom that hybridizes with the delocalized conduction electrons of a metallic bath. Yigal Meir has famously argued that the 0.7-anomaly likewise originates from localized spin states leading to the Kondo effect, but others have attributed it to a presumed region of pontaneous magnetization in the point contact. I will show that these seemingly contradictory views can be reconciled by studying the spatially resolved dynamic spin susceptibility in the point contact regime.

[Phys. Rev. Lett. 119, 196401 (2017)]